
On renormalisation of λ 4 field theory in curved space-time. I

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 901

(http://iopscience.iop.org/0305-4470/13/3/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 04:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 901-918. Printed in Great Britain 

On renormalisation of A4i4 field theory in 
curved space-time: I 

T S Buncht, P Panangaden and L Parker 
Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA 

Received 9 May 1979, in final form 30 August 1979 

Abstract. Renormalisation of Ad4 theory in curved space-time is considered in the 
interaction picture. A generalisation of normal ordering to curved space-time is intro- 
duced, based on the construction of adiabatic particle states in Robertson-Walker space- 
time. Dimensional regularisation is used to define uniquely the divergent quantities which 
are removed by normal ordering. It is shown that this normal ordering is sufficient to make 
finite all physical processes including vacuum polarisation to first order in A. An alternative 
and equivalent procedure is given which requires renormalisation of the mass and of the 
constant which couples the field to the Ricci scalar. The stress tensor is found to be finite to 
first order in A and it is shown that if the free-field theory in a Robertson-Walker universe 
predicts that particles are created by the gravitational field with a black-body spectrum then 
this spectrum is maintained when first-order self-interactions are taken into account. 
Finally, some aspects of the renormalisation of second-order physical processes are 
discussed. In particular, it is shown that some second-order Feynman diagrams give rise to 
divergences which involve state-dependent quantities. However, it appears that these 
state-dependent divergences disappear when all Feynman diagrams corresponding to a 
given physical process are summed. 

1. Introduction 

Although a considerable amount of work has been carried out in recent years on the 
development of quantum field theory in curved space-time, relatively little of this work 
has been concerned with interacting field theories. In this paper we consider the 
renormalisation to first order in the coupling constant of the theory of a scalar field, 4, 
with self-coupling A44, and we make some remarks about renormalisation to second 
order. This theory has recently been studied by Birrell and Ford (1980), who investi- 
gated some first-order particle creation processes, and by Birrell and Taylor (1980), 
who investigated the renormalisability of n-point Green’s functions. One problem not 
discussed by these authors is the renormalisation of vacuum-to-vacuum processes. Such 
processes were considered earlier by Drummond (1975) and Drummond and Shore 
(1979), but their work was restricted to the special case of a massless conformally 
invariant scalar field with self-interaction in De Sitter space. Calculations of the 
modification to the Casimir effect for a scalar field when a self-interaction is included 
have been performed by Ford (1978) and Kay (1980). Work on self-interacting scalar 
field theories in curved space-times has also been performed by Freedman and 
Weinberg (1974) and Boulware (1979). 
i Present address: Department of Applied Mathematics and Theoretical Physics, University of Liverpool, PO 
Box 147, Liverpool L69 3BX, UK. 
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After describing some basic formalism in 8 2, we show in 8 3 that the introduction of 
a class of adiabatic vacuum states (Parker and Fulling 1974) enables normal ordering of 
field operators to be defined in curv.ed space-time and that all first-order S-matrix 
elements are consequently finite, including the first-order vacuum-to-vacuum process. 
Although the adiabatic vacuum states are only explicitly defined in Robertson-Walker 
space-times, we assume that this normal ordering procedure Is valid in general 
space-times (since the adiabatic formalism gives the same divergences in the Feynman 
propagator as does the DeWitt-Schwinger formalism (DeWitt 1975)). In 6 4, the stress 
tensor is investigated and shown to be finite to first order in A. We find that a stress 
tensor which represents radiation by the gravitational field of non-interacting particles 
with a Planckian spectrum maintains the Planckian form to first order in A ,  In 3 5 a 
preliminary investigation of second-order renormalisation is carried out. The main 
result is the appearance of non-geometrical state-dependent divergences in some 
Feynnian diagrams. It will be shown in a following paper (Bunch and Panangaden 
1980) that these divergences disappear in  conformally flat space-times when all 
diagrams corresponding to a particular physical process are summed, so that theory 
remains renormalisable in curved space-time, at least to second order in A. That this 
second-order result is valid in general curved space-times is proved in Bunch and 
Parker (1979). 

2. Basic formalism 

The Lagrangian density is 

$=$&[d*&aF&-(m~ +toR)r$i - ~ A o c $ ~ ]  

where the subscript zero on any quantity indicates that it is a bare quantity and the hat 
on any operator means that it is a Heisenberg picture operator. The Heisenberg picture 
field equation is 

0 & + ( m ~ ) + t & ) f o + A o &  = O .  (2.2) 
The momentum conjugate to do is 

(2.3) 

and the canonical commutation relations are 

[&XO, x), dO(X0, x')I= 0 = [7;o(Xo, x), Go(X0, x')l 

[do(xo, XI, &o(xo, x')] = is (x --.I/). 

& ( x )  = Goao&J -9 

(2.4) 

The Hamiltonian density is 

= $ Jg [goo (ao$o)2 - giiai&oai$o + ( m i  + + $ A O ~ ; ] .  (2 .5 )  

This canonical formalism is well-known (see, for example, Fulling 1972) and 
requires only that the space-time be globally hyperbolic. Now introduce renormalised 
quantities 

f = z ; 1 ' 2 f 0  m2 =Z; 'm; .! = z;'to A =ZT1ho. (2.6) 
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Then 
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$=$ JgZ l [d~da~d- (Z2m2+Z3[R)d2] - ,  A -  Jgz4z:d4 
1/2  G=Z1 T o  

[ ~ ( x O ,  x), ~ ( x o ,  xl)] = iS(x -XI )  

and 
- 

2 = ~ ~ g Z l [ g 0 G ( a o ~ ) 2 - g g 1 a , ~ e l ~  + ( Z 2 m 2 + Z 3 [ R ) d 2 ] + i J ~ ~ Z 4 Z ~ d 4 .  (2.10) 

The Hamiltonian density decomposes into free and interacting parts: 

&(x) = 2OCX) + & ( x )  

@O(x) =; Jg[goo(aodo)2-g”a,doa,do+(m2+~R)d~]  (2.12) 

(2.11) 

where 

&(x)=; Jg[ (Z2- l )m2+(Z3-1) [R]d~ +a  JgZ4Adi. (2.13) 

The Heisenberg equation of motion for any operator fi = fitdo, Go) is 

aofi = i[&, fi] (2.14) 

where 6 is the Hamiltonian 

fi = fi(do, &) = \ k(x) d3x. (2.15) 

The Hamiltonian can be expressed as the sum of a free part and an interacting part: 

A=Ao+fi’ (2.16) 

with 

(2.17) 

A’= &(x)d3x. (2.18) 1 
Taking fi = do and fi = 7jo in (2.14) yields equations (2.3) and (2.2). 

interaction picture operator fl and state /+)I by 
Given any Heisenberg picture operator fi and state I + ) H ,  one can define an 

sz = U(X0, - c o ) f i u ( x o ,  --CO)-’ 

I+b0))I = U(X0, --CO)lrl/FI) 

and 

where U = U(xo,  --CO) is a unitary operator which satisfies 

iaoU = H’U = Ufi‘ 

and the boundary condition 

(2.19) 

(2.20) 

(2.21) 

Iim u(xo, --CO) = I  (weak operator convergence). (2.22) 
xo-+-cc 
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The equation of motion for an interaction picture operator is easily derived from (2.14), 
(2.16), (2.19) and (2.21): 

aos2 = i[Ho, Cl] (2.23) 

from which one obtains 

vo = Jg goL”aF40 7T = Jg goFZla& (2.24) 

and 

0 40 + (m * + [R )do = 0 0 4 + ( m 2 + g 7 ) 4  = o .  (2.25) 

Thus the interaction picture field operator satisfies the free-field equation with renor- 
malised mass and coupling to the scalar curvature. 

The S matrix can now be constructed as in Minkowski space-time: 

s = lim u ( x 0 ,  -CO) (weak operator convergence). (2.26) 
xo-m 

One obtains in the usual manner 

(2.27) 

where 

(2.28) 

In order to construct physical particle states we assume, as for interacting fields in 
Minkowski space-time, that the interaction is switched on at some early time and off 
again at some late time. The divergences which we will be dealing with are local so that 
switching the interaction on and off asymptotically is not expected to affect renor- 
malisability. In the in-region, before the interaction is switched on, the physical 
renormalised field operator is assumed to be a linear combination of positive and 
negative frequency solutions of the free wave equation: 

s(0) = I s ( n )  =- (--i)flj T(%’(xl) .  . . %’(xn) )  d4x1 . . . d4xfl. 
n !  

(2.29) 

The in-vacuum is then defined by 

Aklin) = 0 for all k. (2.30) 

If the space-time is flat at early times the functions 4: will be positive frequency 
plane waves of momentum k and the vacuum state will correspond to the absence of 
Minkowski particles. However, it is not necessary to assume that the geometry is 
initially flat, although if it is not, some physically motivated criterion for defining 
positive frequency solutions of the wave equation must be found so that the con- 
struction of physical particle states can be carried out. Given a state iin), an ‘in’ Fock 
space, gin, can be constructed by applying creation operators A:’ to /in). At late times, 
after the interaction has switched off, a similar decomposition can be made: 



On renormalisation of field theory: I 905 

where +?' is positive frequency at late times, and an 'out' Fock space, go,,, is 
constructed with vacuum lout) for which 

Ayt fout )  = 0 for all k. (2.32) 

At intermediate times the renormalised interaction picture field operator satisfies the 
free-field equation and we take 

(2.33) 

where the solutions 4 k  reduce to 4: at early times and we can make the identification 

Ak =A:. (2.34) 

The factor 2T1'* must be included in (2.33) to ensure that A k  and AL. have the correct 
commutation relations for annihilation and creation operators. These commutation 
relations are derived from (2.9) which contains a factor 2:" through (2.8). Note that at 
early and late times the interaction switches off so that Z1 +. 1 and 4 (x) becomes 

(4(x))xo-m = [ ~ C L ( ~ ) [ A ~ ( ~ ~ ( X ) ) X O - ~ , + A : ( ~ ~ ( X ) ) X O ~ ~ ~ ] .  (2.35) 

The solutions 4 k  do not necessarily reduce at late times to 4?', since particles can be 
created by the gravitational field leading to a mixing of positive and negative frequency 
components of the field. In general we have 

(4k(x))xo+m=j dp(k ' )  [akk'40kp'  +@kk4tPU']. (2.36) 

This defines the Bogolubov transformation relating Fin to Pout : 

Let the initial state of the system in the interaction picture be 14i) E 4,. At time t, the 
state will be 

I$(t)) = U ( G  -a)l4i). (2.38) 

Thus the amplitude that at late times the system will be in a state I&) E gout is 

(2.39) 

In this expression, all information about particle creation due to the self-interaction 
is contained in S and all information about gravitational particle creation is contained in 
the Bogolubov transformation relating g i n  to go,,. 

3. Renormalisation of S-matrix elements to first order in A 

Suppose that the initial state of the system is the vacuum state, lin). Then the amplitude 
that the final state of the system will be an n-particle out-state Ikl, . . . , k,, out) where 
kl ,  . . . k,  are the quantum numbers of the n final particles is 

amplitude = (kl,  . . . k,, out 1 S I in). (3.1) 
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It will be sufficient to consider only processes in which the initial state i s  /in) to 
discuss renormalisation. Once renormalisation has been carried out, the calculation of 
other amplitudes is straightforward. Inserting a complete set of in-states gives 

x ( p l , .  . . p 4 , i n / S / i n ) + .  . . (3.2) 
where we have used the fact that the A4‘ interaction can create particles only in pairs. 
Expression (3.2) can contain only a finite number of terms when the Smatrlx is 
calculated to finite order in perturbation theory. To first order in A it contains only the 
three terms explicitly shown. Each of the quantities ( k l ,  . . . , k,, out lpl, . . . , pm, in) is 
finite and independent of A and can be obtained in terms of the Bogolubov coefficients 
(Parker 1977). For Ad4 theory, power counting arguments show that the only divergent 
S-matrix elements are those with zero, two or four external lines. Thus the S-matrix 
elements will all be finite provided that we renormalise (in 1 S I in), (p1p2, in 1 SI in) and 
( p , ,  . . . , p4 1 S I in). To first order in A, these correspond respectively to figures 1-3. The 
third of these is in fact finite so only the first two need to be renormalised. 

Figure 1. 

- 
Figure 2. 

Figure 3. 

The interaction Hamiltonian density is given by (2.13). The renormalisation 
constants Zi(i = 1,2 ,  3 ,4)  are power series in A : 

m 

fl=l 

z;=l+ A“ZIn’. 

Thus to first order in A, the interaction Hamiltonian density is 

X ’ ( x ) = $ A  J g [ Z : 1 ’ m 2 + Z : 1 ’ ~ R ] d ~ + a h J g d ~ .  

(3.3) 

(3.4) 
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In order to obtain finite S-matrix elements from this interaction Hamiltonian 
density we will introduce a generalisation to curved space-time of normal ordering of 
field operators. Let the space-time be an arbitrary Robertson-Walker universe with 
metric 

ds2 = C(r))[dr)’-(l -Er2)-’dr2-r2(d02+sin2 Od4’)l (3.5) 

where the universe is spatially open, flat or closed for E = -1,0 or +l. We will indicate 
how this restriction on the metric of the space-time is to be removed later. Since normal 
ordering of field operators corresponds to the removal of divergent vacuum polarisation 
contributions, the most important step in defining normal ordering in curved space- 
time is to define what is meant by a physical vacuum state. In Minkowski space-time 
this is straightforward since there exists a unique PoincarC invariant vacuum. In curved 
space-time no such unique vacuum exists. However, for metrics of the form (3.5) and 
for the spatially flat anisotropic Kasner metrics it is possible to define a class of 
approximate physical vacuum states called adiabatic vacuum states (Parker and Fulling 
1974, Fulling et a1 1974). This is achieved by decomposing the field 4 ( x )  according to 

4 o ( X )  = c-1’2 (77) d f i ( k ) [ a k Y k ( X ) X k ( r ) ) + a : Y ~  (X)XE ( r ) ) ]  (3.6) 

where Yk(X) are eigenfunctions of the three-dimensional Laplacian operator on an 
= constant hypersurface, dfi(k) is a measure on the space of quantum numbers k and 

the functions X k ( r ) )  satisfy 

(3.7) 

U :  = k 2 +  Cm2 (3.8) 

and the normalisation condition 

The range of k is restricted to be O <  k <CO for E = 0, -1 and k = 1 , 2 , 3 , .  . . for E = 1. 
Approximate solutions X k ( r ) )  to (3.7) are now sought having the form of a positive 
frequency WKB solution: 

where wk(r)) satisfies (from (3.7) and (3.10)): 

(3.10) 

(3.11) 

The solution wk (7) to (3.11) is obtained iteratively and it is not difficult to see that as 
the iteration proceeds the terms obtained contain an increasing number of derivatives 
with respect to r )  and at the same time involve increasingly large iriverse powers of Wk so 
that the WKB solutions provide a. good approximation in the limit of slowly and 
smoothly varying geometry or of high frequency W k .  If, following Fulling et al (1974), 
we say that it term involving n derivatives with respect to r) is a term of adiabatic order 
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T-", then we find that to adiabatic order T o  
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w k  = W k  

and to adiabatic order T-' 

w k  = w k  + 
2 w ;  

(3.12) 

(3.13) 

The solution to adiabatic order T-4 is given in Bunch (1980). Because the solution for 
,yk(v) is only approximate, the annihilation and creation operators ak and a:  are not 
completely specified and so there is not a unique vacuum: there is instead a class of 
vacuum states which can be made smaller by carrying out the WKB approximation to 
increasingly high order. The important physical properties of an adiabatic vacuum are 
that it reduces to the usual particle concept in the static limit, since the lowest order 
solution (3.12) becomes exact in this limit, and that for a time-varying geometry the 
adiabatic vacuum corresponds to the absence of particles in suficiently high frequency 
modes. Actually, the inherent indeterminacy of an adiabatic vacuum is a reflection of 
the fact that particles are created by the gravitational field in all modes including high 
frequency modes. However, the energy density of created particles at any time in mode 
k falls off as some high inverse power of k as k + 00, the precise behaviour depending on 
the adiabatic order to which the vacuum is defined (for more details, see Fulling (1979)). 
It is this property that makes an adiabatic vacuum a suitable state for investigating the 
renormalisation of the stress tensor and for defining normal ordering since the diver- 
gences to be removed by renormalisation or normal ordering come from the high 
frequency modes which are accurately given by the WKB approximation. To renor- 
m a k e  the stress tensor the WKB approximation must be carried out to adiabatic order 
T-4 but we shall find that for normal ordering of S-matrix elements the order T-' 
solution (3.13) is sufficient. 

Suppose that the field operator 4 ( x )  is decomposed: 

4&)=4P(x)+4b- ) (x )  (3.14) 

where 4&+) (x )  is a positive frequency WKB solution defined to adiabatic order T-' and 
~ L - ' ( X )  the corresponding negative frequency solution. To each decomposition (3.14) 
there corresponds an adiabatic vacuum The operators & ( x )  and & ( x )  are 
normal ordered with respect to IO), by making all positive frequency parts (annihilation 
operators) stand to the right. The normal ordered operators are thus 

" x ) )  = 4 3 X ) - [ 4 A + ) ( X ) ,  4b-)w1 (3.15) 

N ( 4 :  (XI) = 4: (x) - 642 (~) [4b'"(x) ,  4L-)(x)l+ 3[4b'" (x), 4b-'Cx)l2 (3.16) 

where the commutator of the positive and negative frequency parts is just 

[4k+)(x)j 4L-'(x)l =A(O/4;(X)IO)A.  (3.17) 

Thus a different normal ordering procedure is obtained for each IO), in the class of 
adiabatic vacuum states of order T-'. To make the normal ordering procedure unique 
we will evaluate (3.17) by dimensional regularisation and retain only the pole term, 
which is independent of which vacuum IO), is chosen. This procedure must ultimately 
be justified by renormalisation of coupling constants and we will show at the end of this 
section that normal ordering of the two-particle creation amplitude ( p l ,  p 2 ,  inlSlin) 
is equivalent to renormalisations of m and 6. In a following paper (Bunch and 
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Panangaden 1980) it will be shown that normal ordering of vacuum-to-vacuum 
processes can be justified by renormalisation of coupling constants in the Einstein 
action. 

To evaluate (3.17) we substitute (3.6) and use equation (5.21) of Fulling eta1 (1974) 
to obtain 

(3.18) 

where we have regularised by replacing k 2  by k”-2 where n is the dimension of 
space-time. When E = 1 the integral should be replaced by a sum, but we will use (3.18) 
for all values of E since we are only intending to keep the divergent pole terms. Using 
(3.13) to obtain W i l  to order T-’ and evaluating (3.18) we find that the pole terms are 

(3.19) 

Denoting this quantity by GD(x), the normal ordered interaction Hamiltonian density is 

(3.20) 

Finally we notice that the expression (3.19) is exactly the same as the expression 
obtained for the divergences in the coincidence limit of the Feynman Green’s function, 
lim,..y G(x, y ) ,  by the DeWitt-Schwinger method (DeWitt 1975). This method does 
not rely on the introduction of an adiabatic vacuum but it has the advantage of being 
valid for an arbitrary space-time. We therefore assume that if adiabatic vacuum states 
were constructed in an arbitrary space-time, equation (3.19) would continue to hold so 
that the normal ordering we have defined can be taken to be valid for a space-time with 
arbitrary metric. 

We are now in a position to consider the evaluation of S-matrix elements and we will 
start with the S-matrix element which represents the creation of a pair of in-particles 
from the vacuum. This is 

(Pl, P2, inlSlin) 

(3.21) 
J 

In this expression, q5;l (x) and 4 t2 (x )  are the wavefunctions of the createdparticles. The 
contribution from figure 2 is the term involving 

dk14k(x)12 =(in]& (x)lin) = G(x).  (3.22) 

But G(x)  has the same divergence structure as G,(x) so that we may write 

G(x)  = GD(x)+ GR(x)  (3.23) 

where GR(x) is the renormalised G(x)  which is finite in four dimensions. It is now clear 
that (3.21) is finite if we take 

zy = zp = 0 (3.24) 



910 TS Bunch, P Panangaden and L Parker 

and the amplitude to create two particles from the vacuum is 

(p1p2, in/S(in) = -3iA d4x4& (x)+;~(x)GR(x). (3.25) 

Because of (3.20) we can write, to first order in A ,  

The vacuum-to-vacuum amplitude is now finite and using the fact that 

(inl4; (x)lin) = 3(inl~$: (x)lin)2 = 3G(xj2 (3.27) 

one sees that -"I 4 Jg(x)d4xG;(x). (3.28) 

Thus normal ordering with respect to an adiabatic vacuum makes all first-order 
processes finite without any renormalisations of the physical parameters of the theory 
being required. This is exactly as in Minkowski space-time except that in curved 
space-time the renormalised amplitudes (3.25) and (3.28) are in general non-zero to 
first order. We will next consider briefly an alternative to normal ordering, namely 
subtracting from the Lagrangian operator its expectation value in an adiabatic vacuum 
state. This leads to a first-order interaction Hamiltonian: 

%(x) =i  AJg[Zi1'm2 +Z:"5'][4: (x) - G ~ ( x ) ] + $ h J g  [$; (x) - 3Gk (x)] (3.29) 

(3.30) 

but 
m2 + ( 5  -im+ GR(X) ,  G ( x )  = 

8 v 2 ( n  -4) 
'Thus, taking 

(3.32) 

(3.33) 

leads to the same expression as before, namely (3.25). Similarly, the vacuum-to- 
vacuum amplitude is given by (3.28). Thus this alternative procedure gives the same 
results as normal ordering but requires renormalisations of m and 8. It is not difficult to 
see that the two procedures will be equivalent to all orders in perturbation theory. 

4. The energy-momentum tensor 

The expectation value of the stress tensor at late times, if the initial state is the 
in-vacuum, is 

( T ~ ~ t ) ) = ( i n l f F v ] i n )  = (in~S'TF,,S~in) (4.1) 
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where the stress tensor operator in the Heisenberg or interaction picture is evaluated at 
late times, after the A44 interaction has effectively been switched off. This means that 
the stress tensor at late times must have the form of the free-field stress tensor: 

T," = TE? = 4(1 - 25){a,4, du4} +4(25 - 9gwy{ap4 ,  a"41- 5{4, V,au4) 

+ Sgwv {4, n4 1 - 5G + 4 m 2g ,  "4 '. (4.2) 

We have written Tr:t) entirely in terms of renormalised quantities: at late times, when 
the system is dispersed, the only effect of the self-interaction is to renormalise the 
physical parameters. Since TIPyUt) is bilinear in the field and its derivatives, normal 
ordering of Tt:t' is straightforward: 

- A(O/ TE:" IO)*. (4.3) 

(4.4) 

: TE:t) : = Tf:') 

To first order in A 

(:Tf:jlt' :) = (in1:T;it' :lin)+(inl[Tl","", S'"]/in) 

where S(l' is defined by equation (2.28) and we used S(')+ = -S(". The first term is the 
same as in the absence of the A44 interaction and is known to be finite provided that the 
normal ordering of Tf:t) is carried out to adiabatic order T-4. 

The final term in equation (4.4) can be evaluated by inserting a complete set of states 
of 4, between S'l' and TICOyUt), Only the two-particle states contribute and one obtains 

(inl[Tflt), S'"]lin) = 2 Re J dp(pl)dk(p2)[(inlTl","t' lpl, p 2 ,  in)(in, plp2/S'"lin)]. (4.5) 

The renormalised matrix element of S"' appearing in (4.5) is given by (3.25). The 
contribution of a typical term from the stress tensor, say q5', to (4.5) is: 

(ini[4 2 ( x ) ,  s '~' llin) 

x G R ( x ' ) ~ $ ,  ( ~ ' 1 4 ; ~  b'). (4.7) 
In this equation, x is taken to be at late times so that 4p(x) may be expressed according 
to (2.36). The momentum integrals in (4.7) do not give rise to divergences since the 
integration over xo' extends over the finite range, say from -7' to T, during which the 
interaction is switched on, so that xo' is always earlier than xo. Thus the momentum 
integrals are effectively cut off for large momenta by the oscillating terms of the form 

(4.8) 4p (x 14; (x') - exp[ip (x - x "' 11. 
Thus one should carry out the integrations over p1 and p z  in (4.7) before taking the limit 
T + CO. The other terms in Tf:" make similar contributions to (4.5) with appropriate 
derivatives acting on the qhP(x) .  Thus, the expression for (TI","t') is finite to first order in 
A. 

We will now specialise to a spatially flat Robertson-Walker metric 

ds2=dt2-a ' ( t )dx.dx (4.9) 
which we assume reduces to Minkowski space-time at late and early times, so that we 
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can discuss how the presence of a self-interaction affects the spectrum of created 
particles. For simplicity we will assume that, after renormalisation, 5 = 0, and we will 
start by showing that the energy density of the created particles is dominated at late 
times by a term which can be expressed as 

(TOO) = I d3pN(p)R, (4.10) 

where N ( p )  is the number density of created particles in mode p per unit proper volume 
and Rp is the energy of a particle in mode p :  

(4.11) 

For the metric (4.9) the modes 4p(x) separate into 

4&) = exdip.  x)$&) (4.12) 

and since G R ( x )  is define,d in terms of absolzte values of modes, GR(x) depends only on 
t ,  so we will write it GR(t) .  Then, taking J g =  a3( t ) ,  (4.7) becomes 

(inl[d2(x), s“) ][in) 

= -12A Re i I dpL(pl)dp(p2) I d3x’ exp [ - i (p l+pd .  x’] I a3(t’)G~(t’)dt’  

x 4 p , ( x ) 4 p Z ( x ) $ ; ,  ( f ’ ) $ &  (0 (4.13) 

(4.14) 

For the spatially flat Robertson-Walker universe, the Bogolubov transformation (2.37) 
simplifies to 

AYt=ffkAk + p z A ? k  (4.15) 

= -96.ir3A Re i d3p a3(t’)GR(t’)&,(t) 2 $ p  * ( t  1 2  ) dt‘. I I  

so that we can write, for late times t, 

= ffpG”‘ 0) + pP$:‘* ( t )  ( t  > T ) .  (4.16) 

Thus we obtain 

(inl[42(x), ~ ( ” I l i n )  

= -96.ir3A Re i d3p a3(t’)GR(f‘)$~(f’)2dt’[ff;$~ut(t)2 

(4.17) 

For large t the terms Qy‘(t)2 and $Eut* (t)’ oscillate rapidly as functions of p ,  whereas 
I$$‘(t)12, which is independent of t, does not. Thus the dominant term in (4.16) at late 
times is 

(in] [42(x) ,  S ‘ ” ]  1 in)=-192.ir3ARe i d3p~pp,l$p(t)12 a3(t’)GR(t’)@(tr)* dt’. (4,18) 

The contribution of this term and similar terms coming from (8wq58vq5), etc, to the 

I I  
+ P ~ J I E u ‘ * ( ~ ~ 2 + 2 f f p ~ p 1 $ : t ( ~ ) 1 2 1 .  

energy density is 

PI = -96.ir3ARe i I d3pp.ppp[~~r$$‘)2+R~~(L”,”~2] I a3(t‘)GR(t’)$;(r’)2dr’. (4.19) 
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Similarly, the free-field contribution to the energy density has the dominant contribu- 
tion 

(4.20) PO = I ~ 3 p l P p 1 2 ~ / ~ ~ ~ ~ u ‘ 1 2 + f l ~ l ~ ~ t  1’1. 

But at late times the space-time becomes flat and 

(4.21) 

where the quantity a. appearing in (4.21) is the constant limit of a ( t )  for large t, so that 

Hence 
I .  

-- 12;” Re i I d3pRpaPPp I a3(t’)G~(t‘)4:(t’)’dt’. 
a0 

This may be written 

P = I d3pflPK(p) 

where 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

is the expected number density of particles per unit proper volume in mode p at late 
times. To verify this final assertion for the order A term (the free-field result is 
well-known to be given by (4.24) with A = 0; see, for example, Parker (1977)) we must 
evaluate the order A term in 

(in\StN”,”Slin) = (inlStA2utATt Slin) (4.26) 

and then divide by the proper volume at late times which is a ; V  where V is the 
coordinate volume: 

V = d3x. (4.27) 

Strictly, the number density is defined as the limit of the number density of particles in a 
finite volume, V, of space-time as V +  00. The order A term in (4.26) is 

(inl[Ny‘, S‘”]/in) = 2 Re 

But 

dpldpz(in/Ni”‘ l p l ,  p2,  in)(pl, p 2 ,  in I S‘”/in). (4.28) I 
= A ~ ‘ ~ A ~  = I a p 1 2 ~ ; ~ ,  + / p p / 2 ~ - p ~ t p + a : ~ : ~ : ~ t p  + a p ~ p ~ & p  (4.29) 
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so that 

(inl[N;”‘, ~“ ’ l l i n )  

= 4 Re  a,,G,(p, -p ,  in I S“’ tin) (4.30) 

= - 12A Re i apPp g(x’) d 4 ~ ’ 4 ~ ( ~ ’ ) 4 ~ p ( ~ ’ ) G ~ ( ~ ’ )  (4.31) 

= -12A Re i aPpp V ~ ~ ( t ’ ) $ ; ( ( t ’ ) ~ G ~ ( t ’ ) d t ’ .  (4.32) 

I J- 
I 

Dividing by U :  V leads to the order A term of (4.24) as claimed. 
One can use the results of the preceding discussion to study to first order in A the 

effect of a A 4 4  interaction on particle creation in a Robertson-Walker universe. For 
example, when .$ = 2 arid m = 0 then GR(x) = 0 and the A44 interaction has no effect to 
first order in A (see equations (4.7) and (4.25)). This result has been proved to first order 
by Birrell and Ford (1980). In Parker (1973) it was shown to all orders in A that no 
massless conformally invariant scalar particles with Ad4 interaction are created by the 
gravitational field in a conformally flat space-time. However, there may be higher 
order modifications to the stress tensor resulting from vacuum polarisation effects, 
similar to the trace anomaly of a free field. Another question one can study is the 
following one, involving consistency between the second law of thermodynamics and 
the predictions of quantum field theory. 

Under the circumstances (i.e. special form of a ( t )  and loss of correlations among 
created pairs) that the expansion of the universe gives rise directly to black-body 
radiation for the free field, does the inclusion of a interaction destroy the 
black-body spectrum? Free-field examples have been discussed by Parker (1977) and 
Audretsch and Schafer (1978) and it is probable that almost any form of a ( t )  will give 
rise to a spectrum of created particles which has the black-body form at sufficiently high 
frequencies. One would expect that interactions should not influence the black-body 
nature of the spectrum because the entropy is already a maximum and cannot decrease 
as the interaction is turned on. 

The black-body radiation is in a mixed state rather than a pure state (otherwise it 
would not possess such a large entropy). In the free-field calculations which give rise to 
black-body radiation, it was therefore necessary to assume that the correlations among 
the created pairs are effectively destroyed (for example, through scattering, decays or as 
a result of large spatial separation). A formal inethod frequently employed to destroy 
such correlations in a superposition of states (for example, in discussions of the 
measurement process) is to introduce arbitrary phase factors in the coefficients of the 
states making up the superposition and to average over these phases. In the present 
context, we will use this method to destroy correlations among the created particles at 
late times. 

Consider the wavefunction 4,(x). At early times it reduces to 4 ;  (x) and describes a 
particle in the in-region. At late times it has the form 

4,(x) = n , ~ ; ” ‘ ( X )  +ppqP;* (x) (4.33) 

which describes a superposition of a particle and an antiparticle in the out-region, with 
a, and p p  being the coefficients in the superposition. To destroy correlations between 
members of the created pairs we introduce arbitrary phase factors in cy and p : 

cy -+ exp (iya)a, P -+ exPG Yo )P (4.34) 
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where ya and -yp are arbitrary real variables. To obtain the results for a statistical 
mixture, we average over these variables. From equations (4.18) and (4.25) it is then 
clear that when this averaging over phases is performed, the terms of order h in N ( p )  
and (TNV) vanish. Thus, to order A the spectrum at late times is not altered by the 
self-interaction. 

5. Preliminary discussion of renormalisation in second order 

To second order in A, the normal ordered interaction Hamiltonian density is 

X ( X ) = $ A J ~ [ ~ ~ ( X ) - ~ ~ : ( X ) G D ( X ) + ~ G ~ ( X ) ]  

+ d  h2V’g [2i2’m2 +2k2’5~1[4: ( x )  - ~ ~ ( x ) ]  

+a  A2JiZ$’)[q5:(~) - ~ ~ ~ ( x ) G D ( x )  +3G; (x)]. (5.1) 
Second-order S-matrix elements can be evaluated by using Wick’s first theorem to 
express the time-ordered product of two field operators [for example, T(4: ( x ) 4 :  ( y ) ) ]  
in terms of contractions (free Feynman Green’s functions) and normal ordered opera- 
tors. It is most convenient to perform this decomposition of time-ordered products with 
respect to the ‘in’ Fock space, Fin. Then the Feynman Green’s function is 

G(x, Y )  = (in1 T(4o(X)4dY ) ) l i d  (5.2) 
and the normal-ordering in the Wick expansion is with respect to the interaction picture 
annihilation and creation operators. 

The simplest second-order S-matrix element to renormalise is that representing the 
creation of four in-particles from the vacuum, (pl, . . . , p4, in\Slin). In terms of Feyn- 
man diagrams, this is the sum of figure 4 and 5. 

It is clear that a suitable choice of 2:’’ makes ( p l ,  . . . , p4, inlS/in) finite. We find 
that 2:’’ has the same value as in Minkowski space-time, namely 

Figure 4. 

Figure 5. 
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In curved space-time, the essence of the calculation is the evaluation of the 
divergences in 

or, equivalently, in 

which has the same divergences as (5.4). But (5.5) is just 

1 
4% x) = 8.ir2(n -4) +finite terms 

15.5) 

(5.6) 

where f ( v ,  x )  is the zeta function for the manifold, sometimes written (xIGYIx). 

diagrams are figures 6-9. 
Consider now the creation of two in-particles from the vacuum. The second-order 

Figure 6. 

Figure 7. 

Figure 8. 

n 

Figure 9. 
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The loops in figures 6 and 8 which begin and end at the same point are, in fact, made 
finite by the normal ordering we have performed. Thus the S-matrix element cor- 
responding to figure 6 is proportional to 

The action of G2(x, y )  as a distribution in y is, from ( 5 . 5 )  and (5.6), 

(5.7) 

where by ‘finite term’ is meant a distribution which maps test functions in n dimensions 
to quantities which are finite as n + 4. Thus the divergence in (5.7) is proportional to 

The divergence in figure 8 has the same structure. These two divergent quantities do 
not cancel out when added together, so it is to be hoped that they will be cancelled by a 
similar contribution from figure 7. This calculation has recently been performed by two 
of us (Bunch and Panangaden 1980) who found that there is indeed a contribution 
having the same form as (5.9) which achieves the required cancellation so that no 
divergences involving GR(x) remain when all diagrams representing the creation of two 
in-particles from the vacuum are summed. 

The divergences in figure 7 are known once the structure of G3(x, y )  as a distribution 
in y is known. Birrell and Taylor (1980) have shown that the divergences arising from 
the evaluation of G3(x, y )  can be expressed by writing G3(x, y )  as a distribution having 
the following form: 

G3(x, y )  = f ( x ) d ( x ,  y )  +f”(x)a,d(x, y )  + f ” ” ( x ) V , ~ , $ ( x ,  y )  +finite term (5.10) 

where f ( x ) ,  f” ( x )  and f ” ” ( x )  are a scalar, a vector and a tensor field having poles at n = 4 
and g ( x ,  y )  is the invariant delta function, g - 1 / 2  ( x ) S ( x ,  y ) .  (Birrell and Taylor actually 
discussed the structure of G2(x, y )  as a distribution in six dimensions (so that poles 
appear at n = 6), but their arguments apply equally well for G3(x, y )  in four dimen- 
sions.) On the basis of dimensional arguments and by considering an expansion of the 
metric g,, about Minkowski space-time, Birrell and Taylor deduced that f ( x )  andf”(x) 
must have dimensions (length)-2 and (length)-’ and that f ’ ” ( x )  is dimensionless and, 
moreover, that they can all be expressed in terms of quantities which involve no more 
than two derivatives of the metric. This implies that f ( x )  is a linear combination of 
m2,  R and GR(x) , fF(x)  is zero and f””(x) is proportional to the metric, g,“.  Thus 

G3(x, y )  = [cow2 + clR + C~GR(X) ]~(X ,  y )  + c 3 0 $ ( ~ ,  y )  (5.11) 

where co, c1, c2 and c3 are constants having pales at n = 4. Birrell and Taylor assumed 
that G3(x, y )  could only contain information about the mass of the field and the 
geometry of space-time and so did not consider the possibility of GR(x) appearing in 
(5.11). However, G3(x, y )  contains information about the quantum state and this 
shows up in the appearance of GR(x) in (5.11). 
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The S-matrix element corresponding to figure 7 is proportional to 

+ c3 [ 0 CP;, b)4& ( x )dg (x )  d"x. (5.12) 

The term involving GR(x) has the same structure as (5.9) and, as mentioned above, we 
have verified that the sum of all such terms is zero. The remaining teams in (5.12) are, 
using the wave equation, 

4;% ( ? c ) ~ ; ~ ( x ) [ ( c o - c ~ ) ~ ~ + ~ c ~  --&dRIJg(x) d"x. (5.13) 

Obviously these divergences are removed by suitable choices of Zi2)  and Zi2) in the 
S-matrix element corresponding to figure 9. 

In this section we have given a brief discussion of the renormalisation of second- 
order particle creation processes and we have indicated that the appearance of 
divergences involving GR(x) does not affect renormalisability. Similar divergences 
appear in vacuum-to-vacuum processes and we have also verified that they cancel when 
all such diagrams are summed. A more complete account of the renormalisation of 
second-order processes, including vacuum-to-vacuum processes, appears in Bunch and 
Panangaden (1 980). 
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